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Two types of capillary–gravity interfacial solitary waves are computed numerically:
‘classical’ solitary waves which bifurcate from a uniform flow at a critical value of the
velocity and solitary waves in the form of wave packets which bifurcate from a train of
infinitesimal periodic waves with equal phase and group velocities. The effects of finite
amplitude are shown to be quite different from the pure gravity case for the classical
solitary waves. The solitary waves in the form of wave packets, which are known
to exist for small density ratios, are shown to exist even for larger density ratios,
but only at finite amplitude. The numerical code is based on an integro-differential
formulation of the full Euler equations. The experimental results of Koop & Butler
(1981), which have been compared earlier with results from model equations, are
compared with the present numerical results.

1. Introduction
Solitary waves that propagate steadily along the interface between two fluids, with a

lighter fluid lying above a heavier one, are studied. Both gravity and capillary–gravity
waves are considered.

In the case where the fluids occupy a closed channel of infinite horizontal and
constant uniform vertical extent, i.e. in the so-called rigid-lid configuration, it is well
known that gravity solitary waves bifurcate from a uniform flow at a critical value of
the fluids velocity c given by

c2 = gh1

(
1− R

1 + R/H

)
, (1.1)

where h1 denotes the depth of the lower layer, g the acceleration due to gravity, R the
ratio of densities and H the ratio of fluid depths h2/h1. The speed of the bifurcated
waves is larger than c. Such waves have been studied experimentally by Koop &
Butler (1981) and by Michallet & Barthélémy (1996) for example. Considering either
true solitary waves or periodic waves of very long wavelength, Funakoshi & Oikawa
(1986), Turner & Vanden-Broeck (1988), Pullin & Grimshaw (1988), Mirie & Pennell
(1989), Sha & Vanden-Broeck (1993), Moni & King (1995) and Evans & Ford (1996)
followed numerically the solitary waves away from the bifurcation point by increasing
the velocity.

Whether the bifurcating solitary waves are of elevation or depression depends on
the sign of H2−R. If H2−R > 0, the waves are of elevation. If H2−R < 0, the waves
are of depression. Several studies have been devoted to the particular case where
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H2 ≈ R. Amick & Turner (1989) and Mielke (1995) provided a proof of existence of
small-amplitude fronts.

The effects of surface tension on the interfacial solitary waves described above
have been studied by Kirrmann (1991). As for surface waves, there are also capillary–
gravity solitary waves bifurcating from a uniform flow when the speed is equal to the
value given by (1.1). However, if the Weber number

W =
σ

ρ1(h1 + h2)c2
,

where σ is the coefficient of interfacial tension and ρ1 the density of the lower fluid,
is non-zero and less than a critical value

W ∗ =
1

3

(
1 + RH

1 +H

)
,

the solitary waves are generalized, in the sense that they have ripples in their tail.
These ripples are periodic waves whose phase velocity is the same as the speed of the
solitary wave. For high enough surface tension (W > W ∗), the solitary waves are true
solitary waves as in the gravity case. However, the dependence on the sign of H2 −R
is exactly the opposite. The solitary waves are of elevation if H2 − R < 0 and of
depression if H2−R > 0. Kirrmann (1991) performed an analysis near the critical case
where H2 ≈ R and found among all possible solutions solitary waves with an algebraic
decay towards infinity. Kirrmann’s analysis is a weakly nonlinear analysis valid near
the bifurcation point (1.1). One of the goals of this paper is to provide numerical
results based on the full Euler equations for these ‘classical’ capillary–gravity solitary
waves when the Weber number is sufficiently large (W > W ∗). Exponentially decaying
as well as algebraically decaying solitary waves will be considered.

All the work described above focuses on solitary waves bifurcating from infinites-
imal long waves. Such waves bifurcate when the phase speed c is equal to the value
corresponding to the local extremum of the dispersion relation c(k) at k = 0, where k
denotes the wavenumber. More recently, attention has been given to the case where
the phase speed c is equal to the value corresponding to the minimum of the dis-
persion relation at k = k∗, with k∗ 6= 0, when such a minimum exists. This case was
first considered for surface waves in finite depth by Iooss & Kirchgässner (1990) and
extended to infinite depth by Iooss & Kirrmann (1996). In both cases, the existence
of symmetric solitary waves in the form of wave packets with damped oscillations in
their tail, bifurcating from infinitesimal periodic waves with k = k∗, was proved. In
finite depth, the envelope decays exponentially towards infinity while in infinite depth
the decay is algebraic. The results were partially extended to interfacial waves by Dias
& Iooss (1994), (1996) for the full Euler equations, and by Benjamin (1992), (1996) for
a model equation. Another goal of this paper is to provide numerical results based
on the full Euler equations for these capillary–gravity solitary waves in the form of
wave packets. The computations will be restricted to infinite depth.

In § 2, the mathematical formulation of the problem is provided. Section 3 is devoted
to ‘classical’ solitary waves, while § 4 is devoted to solitary waves in the form of wave
packets. Sections 3 and 4 follow the same structure: the linear as well as the nonlinear
analytical results are described first. Then the numerical scheme used to solve the
problem is presented. Then various model equations and their solutions are reviewed
or obtained. Finally numerical results are presented. The last section (§ 5) discusses
the limiting configurations of interfacial solitary waves, some of their properties as
well as the physical relevance of the computed solutions and their stability. Appendix
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Symbol Physical quantity Dimension

c wave velocity [L][T ]−1

σ coefficient of interfacial tension [M][T ]−2

g acceleration due to gravity [L][T ]−2

hj depth of the layer j [L]
ρj density of the fluid in the layer j [M][L]−3

k wave number [L]−1

(x, y) physical coordinates [L]
(uj , vj) velocity components in layer j [L][T ]−1

ψj(x, y) stream function ψjx = −vj , ψjy = uj [L]2[T ]−1

φj(x, y) velocity potential φjx = uj , φjy = vj [L]2[T ]−1

η(x) profile of the interface [L]

Table 1. Physical parameters and their dimension

Symbol Definition Dimensionless quantity

K k(h1 + h2) dimensionless wavenumber
H h2/h1 depth ratio
Hj hj/(h1 + h2) relative depth of layer j
R ρ2/ρ1 density ratio
W σ/[ρ1(h1 + h2)c2] Weber number
F2 c2/[(1− R)g(h1 + h2)] square of Froude number
X x/(h1 + h2) dimensionless horizontal coordinate

Y (X) η/(h1 + h2) dimensionless profile of the interface
(Φj,Ψj) 1/[c(h1 + h2)](φj, ψj) dimensionless potential and stream function

Table 2. Dimensionless quantities

A provides a straightforward description of conjugate flows. Appendix B describes
the reduction method used to obtain the model equations.

2. Formulation
The problem is formulated in a frame of reference moving with the solitary wave.

Therefore, the velocity in both fluids approaches c at infinity. All quantities related
to the upper fluid layer have the index 2, while those related to the lower layer are
indexed with 1. All the physical parameters as well as the dimensionless numbers are
provided in tables 1 and 2. The x-axis coincides with the interface at rest. The y-axis
is vertical.

The continuity equation and the irrotationality condition can be written in each
layer in the form

uix + viy = 0
uiy − vix = 0

}
i = 1, 2 . (2.1)

The boundary conditions along the walls are

v1(x,−h1) = 0 , (2.2)

v2(x, h2) = 0 . (2.3)

At the interface, there are two kinematic conditions

uiηx − vi = 0 , i = 1, 2 , at y = η(x) . (2.4)

Using Bernoulli’s equation in each fluid and eliminating the pressures at the interface,
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Figure 1. The shaded regions indicate values of the parameters F and W where small-amplitude
solitary waves are known to exist. In region 1, there are generalized solitary waves (with non-decaying
oscillations in their tail), which bifurcate from a uniform flow with speed F∗ (3.1). These waves
are not considered in this paper. In the limit W → 0, these generalized solitary waves become the
well-known classical gravity solitary waves which have been studied in several papers. In region 2,
there are capillary–gravity solitary waves, which also bifurcate from a uniform flow with speed F∗

(3.1). These waves are considered in § 3. In region 3, there are true capillary-gravity solitary waves
in the form of wave packets. They bifurcate along the curve Γ1 which is given in parametric form in
§ 4.1. These waves are considered in § 4. The diagrams (a) and (b) are drawn for some given values
of R and H . They do not change qualitatively as H varies. However, as R varies, the bifurcations
along the curve Γ1 change. For small enough values of R, the bifurcations are qualitatively similar
to the free-surface problem (a). For large enough values of R, (b), there are also generalized solitary
waves in region 4. These waves are not considered in this paper. The curve Γ2 is discussed in § 3.

one can write the dynamic condition in the form

1
2
ρ1(u

2
1+v2

1)− 1
2
ρ2(u

2
2+v2

2)+(ρ1−ρ2)gη−
σηxx

(1 + η2
x)

3/2
= 1

2
(ρ1−ρ2)c

2 at y = η(x) . (2.5)

The dispersion relation for linearized interfacial waves is given by

D(F,W ,R,H;K) = 0 ,

where

D(F,W ,R,H;K) ≡ (F−2 +WK2) tanh(KH1) tanh(KH2)

−K [R tanh(KH1) + tanh(KH2)] . (2.6)
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Figure 2. Properties of conjugate flows. In both cases, the upstream velocity is the same, equal to
F = F∗c ≡ (1 + R1/2)−1. In both cases, the interface is at the same level downstream. The value of
H1 is H1c ≡ (1 + R1/2)−1. The profiles of the fronts have not been computed on the full equations
but on the modified Korteweg–de Vries equation (A 20).

The problem involves four parameters: the Froude number F , the Weber number
W , the density ratio R and the depth ratio H . However, the bifurcation diagram
depends only on F and W , at least qualitatively. For most values of R and H , the
bifurcation diagram in the (W,F2)-plane for the two-fluid system is qualitatively
similar to that for the free-surface problem of a single layer of fluid of finite height
(see figure 1a). The generalized solitary waves bifurcate along the line F = F∗ with
0 < W < W ∗ (region 1), the ‘classical’ solitary waves bifurcate along the line F = F∗

with W = 0 or W > W ∗ (region 2), the solitary waves in the form of wave packets
bifurcate along the curve Γ1 (region 3). Note however that for large enough values of
R the picture changes slightly along the curve Γ1 (see figure 1b). It is possible to have
a region 4 where dark solitary waves are present. Dark solitary waves approach the
same periodic wave with a phase shift at +∞ and −∞. The curve Γ2 will be discussed
in § 3.

3. ‘Classical’ solitary waves
3.1. Linear results

The Taylor expansion of (2.6) near K = 0 starts with the K2 term and contains only
even powers of K . It is easy to show that the coefficient of K2 vanishes when F = F∗,
and that in addition the coefficient of K4 vanishes as well when W = W ∗, where the
critical values F∗ and W ∗ are given by

1

F∗2
=

1

H1

+
R

H2

, W ∗ = 1
3

(H1 + RH2) . (3.1)

In other words, we have D(F∗,W , R,H;K) = O(K4) and D(F∗,W ∗, R, H;K) = O(K6)
for K → 0. For R = 0 and H1 = 1, which corresponds to the free-surface problem,
we recover the well-known values F∗ = 1 and W ∗ = 1

3
.

3.2. Nonlinear results

In the region F near F∗, solutions are similar to those of the free-surface problem if
H2 > R (elevation gravity solitary waves, depression capillary–gravity solitary waves),
while they differ if H2 < R (depression gravity solitary waves, elevation capillary–
gravity solitary waves). When H2 ≈ R and W = 0, there are gravity fronts (see figure
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Figure 3. Types of solutions in the plane F2 versus H1 for R = 0.13 and W = 0. The curve
corresponds to (3.1). The horizontal dotted line corresponds to (3.2). The upstream Froude number
for all fronts is equal to F∗c . Solitary waves are present in the shaded regions. They bifurcate along
the curve. They are of elevation if H1 < H1c and of depression if H1 > H1c. For a fixed value of
H1 not too far from H1c the amplitude of the solitary wave increases and the wave broadens as F
increases, until F reaches the line F = F∗c where the broadening is ‘infinite’.

2). The properties of these fronts can be obtained by writing the conservation of
mass, momentum and energy (see Appendix A). The upstream speed is always

c2 = g(h1 + h2)
1− R1/2

1 + R1/2
or F =

1

1 + R1/2
, (3.2)

while the amplitude is

H1 = H1c ≡
1

1 + R1/2
. (3.3)

These properties are illustrated in figure 2. The profiles, which have been computed
using the model equation which will be introduced in § 3.4.2, are given by (A 21).

Note also that the maximum of the curve (3.1) giving the critical Froude number
F∗ as a function of H1,

F∗2(H1) =
H1(1−H1)

1− (1− R)H1

,

is reached precisely when H1 = H1c, i.e. H2 = R. We denote F∗(H1c) by F∗c .
The results which are known for gravity waves are summarized in figure 3. The

curve represents F∗2(H1). Solitary waves exist inside the shaded regions. The waves
are of elevation if H1 < H1c and of depression if H1 > H1c. Solitary waves bifurcate
from a uniform flow along the curve. As F increases with H1 fixed, the amplitude of
the solitary wave increases. At the same time, the wave broadens. As F approaches
F∗c , the broadening becomes infinite. This is known to be true if H1 is not too far
from H1c. For values of H1 close to 0 or to 1, the fate of the solitary waves as F
approaches F∗c still is an open problem. Therefore, it is not known yet whether the
shaded regions occupy the whole regions between the curve and the line F = F∗c . We
tried to explore this problem with our code but we were not able to draw conclusions
because of a lack of precision. This problem is discussed again in § 5.

For capillary–gravity waves, R = H2 is also a singularity but the consequences are
different. We will show in § 3.5 that solitary waves occupy the region inside the curve
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Figure 4. Decay rate of gravity solitary waves at infinity. For R = 0.13, we picked several values
for κ in (3.4) (κ = 0.5 (a), 1 (b), 1.5 (c), 2 (d), 2.5 (e), 3 (f), 3.2 (g), 3.5 (h), 3.6 (i)) and computed the
corresponding values of F2(H1). The dashed line corresponds to κ = π. The big dot represents the
maximum decay rate κ = 3.67, which is obtained for F = F∗c , H1 = 0.214.

and that for a fixed value of F branches connect one side of the curve to the other.
At the end point opposite to the bifurcation point, the decay of the solitary wave is
algebraic.

The dispersion relation (2.6) provides the decay rate at infinity of solitary waves.
Set K = iκ in (2.6). The real number κ is solution of the equation

1

F2
−W κ2 = κ

[
R

tan(κH2)
+

1

tan(κH1)

]
. (3.4)

For fixed values of the parameters F , W , R and H , this equation admits an infinity
of solutions. The decay rate is given by the smallest root. Solutions of (3.4) are
represented in figure 4 for gravity waves (W = 0). Results for capillary–gravity waves
will be given in § 3.5.

3.3. Numerical scheme

The scheme is exactly the same as the one used by Dias, Menasce & Vanden-Broeck
(1996) in the free-surface case, except that it is extended to two fluids. The interfacial-
wave problem is solved numerically by a boundary integral equation technique. The
complex potentials Φj + iΨj are introduced and chosen as the independent variables.
Without loss of generality, we choose Ψ = 0 on the interface and Φj = 0 at X = 0.

The values of X and Y on the interface Ψ = 0 are denoted by Xj(Φj) and Yj(Φj).
By using Cauchy’s integral formula, one can obtain integro-differential equations for
X ′j(Φj) and Y ′j (Φj), where the primes denote differentiation with respect to Φj . Let
the link between both potentials be given by

Φ2 = g(Φ1) .

Of course

X1(Φ1) = X2(Φ2) , Y1(Φ1) = Y2(Φ2) .
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At infinity, the asymptotic behaviour of the potentials is

dX

dΦ1

→ 1 ,
dX

dΦ2

→ 1 , and therefore
dΦ2

dΦ1

→ 1 .

The equations obtained from Cauchy’s formula are

X ′1 = 1− 1

π

∫ +∞

0

Y ′1

(
1

s− Φ1

+
1

s+ Φ1

)
ds

+
1

π

∫ +∞

0

−(s− Φ1)Y
′

1 + 2H1(X
′
1 − 1)

(s− Φ1)2 + 4H2
1

ds

+
1

π

∫ +∞

0

−(s+ Φ1)Y
′

1 + 2H1(X
′
1 − 1)

(s+ Φ1)2 + 4H2
1

ds , (3.5)

and

X ′1
g′

= 1 +
1

π

∫ +∞

0

Y ′1

(
1

g(s)− g(Φ1)
+

1

g(s) + g(Φ1)

)
ds

+
1

π

∫ +∞

0

[g(s)− g(Φ1)]Y
′

1 + 2H2(X
′
1 − g′)

[g(s)− g(Φ1)]2 + 4H2
2

ds

+
1

π

∫ +∞

0

[g(s) + g(Φ1)]Y
′

1 + 2H2(X
′
1 − g′)

[g(s) + g(Φ1)]2 + 4H2
2

ds . (3.6)

Bernoulli’s equation is

1

2

(
1

X
′2
1 + Y

′2
1

)(
1− R g′2

)
+

1

F2
Y1 +W

Y ′1X
′′
1 −X ′1Y ′′1

(X
′2
1 + Y

′2
1 )3/2

= 1
2
(1− R) . (3.7)

The three equations (3.5), (3.6), (3.7) must be solved for the three unknowns Y1, g
and X1. The system is discretized by choosing N points for the potential Φ1 with an
equal spacing ∆Φ and solved by Newton’s method for fixed values of the parameters
R, F , W , H . The Cauchy principal values are evaluated by using mid-points for the
integrations.

3.4. Analytical solutions

In order to follow the branches of solutions, we start near the bifurcation curves
where a good initial guess is provided by the analytical solutions.

We give the expressions for the steady Korteweg–de Vries equation, the higher-
order Korteweg–de Vries equation as well as the modified Korteweg–de Vries equation,
which are valid in certain regions of parameter space. Such equations have already
been provided by Sun & Shen (1993). An alternative derivation using centre-manifold
reduction and normal forms is provided in Appendix B.

3.4.1. Korteweg–de Vries equation

When F is close to F∗, R not too close to H2 and W either equal to 0 or larger than
W ∗ (but not too close to W ∗), the full equations can be reduced to the Korteweg–de
Vries equation which, integrated once, can be written as

µY + (W ∗ −W )YXX +
3

2H2
1

(
1− R

H2

)
Y 2 = 0 , (3.8)
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where µ is the bifurcation parameter defined by

µ =
1

F2
− 1

F∗2
.

Recall that µ < 0 for gravity waves and µ > 0 for capillary–gravity waves. If µ > 0,
one can introduce the change of variables

µ Ỹ = Y , X̃ = µ1/2 (W −W ∗)−1/2 X ,

and define the elevation number E as

E = − 3

2H2
1

(
1− R

H2

)
.

The resulting equation is

Ỹ − ỸX̃X̃ − EỸ 2 = 0 , (3.9)

which admits solitary wave solutions of the form

Ỹ =
3

2E cosh2
(

1
2
X̃
) . (3.10)

When E > 0, i.e. H2 < R, the waves are of elevation. When E < 0, i.e. H2 > R, the
waves are of depression.

3.4.2. Modified Korteweg–de Vries equation

The unfolding of the singularity H2 = R leads to the modified Korteweg–de Vries
equation

µY + (W ∗
c −W )YXX +

3

2H2
1c

(
1− R

H2

)
Y 2 − 2

H4
1c Hc

Y 3 = 0 . (3.11)

Recall that H1c = (1 + R1/2)−1 and W ∗
c = W ∗(H1c).

If µ = 0, there is a non-trivial solitary wave solution, with algebraic decay at
infinity, given by

Y =
4H1cH2c(W −W ∗

c )(1− R/H2)

Hc(1− R/H2)2X2 + 4(W −W ∗
c )
. (3.12)

This solitary wave is of elevation if H2 > R and of depression if H2 < R.
If µ 6= 0, one can introduce the change of variables

µ1/2 Ỹ =
1

H2
1c

(
2

Hc

)1/2

Y , X̃ = µ1/2 (W −W ∗
c )−1/2 X ,

and define the coefficient Q as

Q = −3

2

(
Hc

2µ

)1/2 (
1− R

H2

)
.

The resulting equation is

Ỹ − ỸX̃X̃ − QỸ 2 − Ỹ 3 = 0 , (3.13)

which is valid if the difference |H2 − R| is of the order of µ1/2. This equation admits
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Figure 5. A periodic solution of the modified Korteweg–de Vries equation (3.11), which is a
succession of humps and hollows.

solitary wave solutions of elevation as well as of depression:

Ỹ =
3

Q

1

(1 + 9/2Q2)1/2
[
cosh2

(
1
2
X̃
)

+ sinh2
(

1
2
X̃
)]

+ 1
, (3.14)

Ỹ = − 3

Q

1

(1 + 9/2Q2)1/2
[
cosh2

(
1
2
X̃
)

+ sinh2
(

1
2
X̃
)]
− 1

. (3.15)

When Q = 0, (3.14)–(3.15) become

Ỹ = ±
√

2

cosh2
(

1
2
X̃
)

+ sinh2
(

1
2
X̃
) . (3.16)

The new feature for capillary–gravity solitary waves as opposed to gravity solitary
waves is that depression and elevation waves can coexist.

Although the emphasis of this paper is on solitary waves and not on periodic
waves, it is interesting to consider the periodic waves of (3.11) when they are close to
the limit of the solitary waves (3.14) and (3.15). They look like a succession of humps
and hollows. Figure 5 shows a periodic solution of the modified Korteweg–de Vries
equation (3.11).

3.4.3. Fifth-order Korteweg–de Vries equation

The unfolding of the singularity W = W ∗ leads to the higher-order Korteweg–de
Vries equation

µY + (W ∗ −W )YXX +
1

45
(H3

1 + RH3
2 )YXXXX +

3

2H2
1

(
1− R

H2

)
Y 2 = 0 . (3.17)

One can introduce the change of variables

µ Ỹ = Y , X̃ = µ1/4

(
45

H3
1 + RH3

2

)1/4

X ,
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and define the coefficients Q and τ as

Q = − 3

2H2
1

(
1− R

H2

)
, τ =

1

µ1/2

(
45

H3
1 + RH3

2

)1/2

(W −W ∗) .

The resulting equation is

Ỹ − τỸX̃X̃ + ỸX̃X̃X̃X̃ − QỸ 2 = 0 .

No general explicit solution of this equation is known. However, when τ = 13/6,
there is an explicit solution given by

Ỹ =
35

24

1

Q cosh4
(

1
12
X̃
√

6
) .

This wave is of elevation if H2 < R and of depression if H2 > R.

3.4.4. Modified fifth-order Korteweg–de Vries equation

Near the codimension-3 singularity F = F∗, W = W ∗, H = R2, one could in
principle write a higher-order modified Korteweg–de Vries equation

µY + (W ∗ −W )YXX +
1

45
(H3

1c +RH3
2c)YXXXX +

3

2H2
1c

(
1− R

H2

)
Y 2− 2

H3
1cH2c

Y 3 = 0 .

(3.18)
We will not say anything more on (3.18). However, in § 5, we will show that the
conditions for this codimension-3 singularity might be obtained experimentally.

3.5. Numerical results

Computations were performed using the numerical scheme described in § 3.3, for
various values of the Froude number F , the Weber number W , the ratio of densities
R and the ratio of heights H .

The case W = 0 corresponds to gravity solitary waves. As said in the Introduction,
these waves have been computed by several researchers. However, to our knowledge,
computations based on the full equations have never been used for comparison with
the experimental results of Koop & Butler (1981). These results have been compared
with the results provided by the Korteweg–de Vries (KdV) equation. The Korteweg–de
Vries equation for gravity waves is

−µY +W ∗YXX +
3

2H2
1

(
1− R

H2

)
Y 2 = 0 , (3.19)

where µ is the bifurcation parameter defined by

µ =
1

F∗2
− 1

F2
.

It admits solitary wave solutions of the form

Y =
3µ

2E

[
cosh

(
1

2

( µ

W ∗

)1/2

X

)]−2

, (3.20)

where E is the elevation number

E =
3

2H2
1

(
1− R

H2

)
.
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Figure 6. Numerical results and comparison with the experiments of Koop & Butler (1981). The
parameters are R = 0.633, H1 = 0.0277, W = 0. The straight line represents the results of the
Korteweg–de Vries equation. The solid curve represents the results of Choi & Camassa (1996). The
dashed line represents the numerical results for the full equations.

Koop & Butler (1981) introduce the quantity

λI =
1

Y (0)

∫ ∞
0

Y (X) dX ,

and plot λI/H1 versus Y (0)/H1. A straightforward calculation shows that

λI

H1

=

(
6W ∗

EH3
1

)1/2 (
Y (0)

H1

)−1/2

.

This is shown by the straight line in figure 6. Recently, the experimental results were
also compared with the results provided by a model equation derived by Choi &
Camassa (1996) and are shown by the solid curve in figure 6. The values of the
parameters for the experiments are R = 0.633, H1 = 0.0277, W = 0. The Froude
number is allowed to vary. The numerical values obtained with the scheme of § 3.3
are shown by the dashed line in figure 6. The results for the full equations make the
link between the results obtained with the KdV equation (small-amplitude waves)
and the results obtained with the Choi–Camassa equation (large-amplitude waves).
The overall agreement with the experiments is good.

Capillary–gravity solitary waves were computed numerically only for W larger than
the critical value W ∗. Recall that for 0 < W < W ∗ the solitary waves are generalized.
It is easier to describe the global behaviour of the solutions in the (H1, F

2)-plane
(see figure 7). Like gravity waves, solitary waves bifurcate along the curve F = F∗.
However, for a fixed value of H1, the value of the Froude number for the bifurcated
wave is smaller than F∗. When they bifurcate, the solitary waves are of depression if
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0 0.5 1.0H1c H1

F2

F*2
c

Figure 7. Types of solutions in the plane F2 versus H1 for R = 0.13 and W = 0.5(> W ∗). The
curve corresponds to (3.1). Solitary waves are present in the shaded region. They bifurcate along the
curve. The bifurcated waves are of depression when H1 < H1c and of elevation when H1 > H1c. For
a fixed value of F not too far from F∗c , the amplitude of the solitary waves of depression increases to
the right until the branch reaches the curve again. At that point, the decay of the waves is algebraic.
The amplitude of the solitary waves of elevation increases to the left until the branch reaches the
curve again. At that point, the decay of the waves is algebraic. Therefore, for any values of F2 and
H1 inside the shaded region there are both solitary waves of elevation and depression.

0 0.5 1.0H1c H1
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F*2
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(b)

(c)

(d )

(e)
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Figure 8. Decay rate of capillary–gravity waves at infinity. For R = 0.13 and W = 0.5, we picked
several values for κ in (3.4) (κ = 0.5 (a), 1 (b), 1.5 (c), 2 (d), 2.5 (e), 3 (f), 3.5 (g), 4 (h)) and computed
the corresponding values of F2(H1). The lower solid line represents the occurrence of a double root
of (3.4). The maximum decay rate, which is κ = 4.66, is obtained for F2 = 0.135, H1 = 0.441.

H1 is smaller than the critical value H1c = (1 + R1/2)−1 and of elevation if H1 > H1c.
Let us now pick a value for F less than F∗c and follow the bifurcated waves numerically
by increasing H1 for the depression waves and by decreasing H1 for the elevation
waves. It turns out that these waves can be followed until the curve F = F∗ is reached
again. Therefore, for each value of F and H1 below the curve, i.e. in the shaded area
in figure 7, there are solitary waves of depression and solitary waves of elevation.

Like gravity waves, the bifurcated solitary waves decay exponentially toward infin-
ity. The decay rate is given by the smallest root of (3.4). As the branch of solutions
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Figure 9. Numerical results for capillary–gravity waves, showing the coexistence of depression as
well as elevation waves. The parameters are R = 0.13, F2 = 0.49, W = 0.5. The critical values are
F∗2c = 0.540, H1c = 0.735. Solitary waves coexist for all values of H1 between 0.577 and 0.849 (solid
line: H1 = 0.63, dashed line: H1 = 0.72, dotted line: H1 = 0.8).
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Figure 10. Comparison bewteen the numerical results (solid lines) and the results (3.14)–(3.15)
from the modified Korteweg–de Vries equation (dotted lines). The parameter values are
R = 0.13, F2 = 0.52, W = 0.5, H1 = 0.72.
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Figure 11. Comparison between the numerical result (solid line) and the result (3.12) from the
modified Korteweg–de Vries equation (dotted line) for a solitary wave with algebraic decay at
infinity. The parameter values are R = 0.13, F2 = 0.535, W = 0.5. The value for H1 is the largest
root of (A 18) (H1 = 0.776). The critical values are F∗2c = 0.540, H1c = 0.735. The profiles are shown
in the (X,Y )-plane: (a) standard scale, (b) logarithmic scale.

reaches the opposite side of the bifurcation curve, the smallest root becomes zero and
the decay becomes algebraic, as was already mentioned in § 3.4.2 when dealing with
the modified Korteweg–de Vries equation. The exponential decay is shown in figure
8. It is possible to have double roots of (3.4). They are indicated on figure 8 as well.
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Symbol Definition Dimensionless quantity

K
(
σ/ρ1c

2
)
k dimensionless wave number

R ρ2/ρ1 density ratio
α σg/(ρ1c

4) modified Weber number
X

(
ρ1c

2/σ
)
x horizontal coordinate

Y (X)
(
ρ1c

2/σ
)
η dimensionless profile of the interface

(Φj,Ψj) (ρ1c/σ)(φj, ψj) dimensionless potential and stream function

Table 3. Dimensionless quantities

The occurrence of double roots is also indicated in figure 1 by the curve Γ2. The
behaviour of the solutions as the curve Γ2 is crossed is extremely rich. This crossing
gives rise to a plethora of solitary waves, which was studied by Buffoni, Groves &
Toland (1996) in the context of surface waves. It has not been studied yet in the
context of interfacial waves. In the present computations, the parameters were kept
inside the region bounded by the bifurcation curve and the curve of double roots in
figure 8. A series of profiles is shown in figure 9 for F2 = 0.49, R = 0.13, W = 0.5.
The only parameter is H1. The spacing is ∆Φ = 0.075, while the number of points is
N = 400. A comparison with the analytical results from the modified KdV equation
is given in figure 10 for F2 = 0.52, R = 0.13, W = 0.5, H1 = 0.72.

The algebraically decaying solitary wave solutions of the modified KdV equation
decay as 1/X2. Therefore the corresponding small-amplitude solitary wave solutions
of the full Euler equations decay as 1/X2 as well. A comparison is provided in figure
11. However, as one moves away from the critical case H2 ≈ R, neither the analytical
results nor the numerical results allow a precise determination of the exact decay rate
at this stage.

4. Wave packets
4.1. Linear results

The critical parameters for the wavenumber K 6= 0 to be a double root of (2.6) are

1

F∗2
=
K

2

[
coth(KH1) + R coth(KH2) +

KH1

sinh2(KH1)
+ R

KH2

sinh2(KH2)

]
,

W ∗ =
1

2K

[
coth(KH1) + R coth(KH2)−

KH1

sinh2(KH1)
− R KH2

sinh2(KH2)

]
.

They are represented by the curve Γ1 in figure 1. For R = 0 and H1 = 1, which
corresponds to the free-surface problem, we recover the well-known values F∗ and
W ∗ of Dias & Iooss (1993). From now on, the analysis and the computations are
restricted to infinite depth for simplicity’s sake. There is no difficulty associated with
finite depth except that it is more tedious. Since the total depth was used as unit
length above, new dimensionless variables must be introduced. They are shown in
table 3. In particular, we introduce the parameter α obtained by dividing the Weber
number by the square of the Froude number:

α ≡ W

(1− R)F2
.
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1
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α

Figure 12. Types of solutions in the plane R versus α in infinite depth. The curve corresponds to
α = α∗ (4.1). Solitary waves in the form of wave packets bifurcate from a train of infinitesimal
periodic waves to the right of the curve, when R < Rc. Dark solitary waves are present to the left
of the curve when R > Rc.

The corresponding values for α and K at the critical point are given by

α∗ =
(1 + R)2

4(1− R)
, K∗ =

1 + R

2
. (4.1)

4.2. Nonlinear results

In infinite depth, there is a critical value of the density ratio

Rc = (21− 8
√

5)/11 ,

the origin of which will be made clear in § 4.4.1. As shown in figure 12, solutions in
the region α near α∗ are similar to the free-surface problem if R < Rc (bright solitary
waves bifurcate to the right of the curve Γ1), while they differ if R > Rc (dark solitary
waves are present to the left of the curve Γ1). In this section, we compute bright
solitary waves when both fluid layers are infinite. Of course, we compute the solitary
waves predicted by the weakly nonlinear analysis but we also show that they exist
in the region where the weakly nonlinear analysis predicts only dark solitary waves.
The reason is that they exist only at finite amplitude and cannot be captured by a
weakly nonlinear analysis.

Before moving to the numerical results, let us recall some facts on the weakly
nonlinear results. For a given value of α < α∗ with R > Rc, there is a one-parameter
family of dark solitary waves as shown by Dias & Iooss (1996). This is in contrast
with what happens when α > α∗ with R < Rc. Let us note also that as long as R > Rc
in finite depth, there is always a critical value of the Froude number along the curve
Γ1 where the singularity corresponding to the transition bright versus dark solitary
waves occurs (see figure 1b) since the fifth-order KdV equation derived in § 3.4.3 in
the region F ≈ F∗, W ≈W ∗ shows that only bright solitary waves are possible.

4.3. Numerical scheme

The scheme is an extension to two fluid layers of the scheme used by Vanden-Broeck
& Dias (1992) for the free-surface problem. Recall that the scaling and dimensionless
parameters are given in table 3. As in § 3, the interfacial wave problem is solved by a
boundary integral equation technique. The complex potentials Φj+iΨj are introduced
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and the interface is described by Ψj = 0. Again, without loss of generality, we choose
Φj = 0 at X = 0 on the interface. Let the link between both potentials be again given
as

Φ2 = g(Φ1) .

The potentials have the same asymptotic behaviours as in § 3.3. Using Cauchy’s
integral formula again we get

X ′1 = 1− 1

π

∫ +∞

0

Y ′1

(
1

s− Φ1

+
1

s+ Φ1

)
ds (4.2)

and
X ′1
g′

= 1− 1

π

∫ +∞

0

Y ′1

(
1

g(s)− g(Φ1)
+

1

g(s) + g(Φ1)

)
ds . (4.3)

Bernoulli’s equation can be written as

1

2

(
1

X ′21 + Y ′21

)(
1− R g′2

)
+ α(1− R)Y1 +

Y ′1X
′′
1 −X ′1Y ′′1(

X
′2
1 + Y

′2
1

)3/2
= 1

2
(1− R) , (4.4)

where the primes denote differentiation with respect to Φ1. The three equations (4.2),
(4.3), (4.4) must be solved for the three unknowns Y1, g and X1. The system is
discretized by choosing N points for the potential Φ1 with an equal spacing ∆Φ and
solved by Newton’s method for fixed values of the parameters α and R. The handling
of the Cauchy principal values is done the same way as in § 3.3.

4.4. Analytical solutions

In order to follow the branches of solutions, we start near the bifurcation curves
where a good initial guess is provided by the analytical solutions.

The expressions for the steady cubic nonlinear Schrödinger equation and the mod-
ified nonlinear Schrödinger equation, which are valid in certain regions of parameter
space, are given below. These equations were derived in Dias & Iooss (1996).

4.4.1. Nonlinear Schrödinger equation

Dias & Iooss (1996) showed that, at leading order, the solutions near the curve Γ1

are given by

Y (X) =
4

1 + R
Re
[
A(X) eiK∗X

]
,

where A satisfies the cubic nonlinear Schrödinger equation

(1− R)µA− AXX −
11− 42R + 11R2

8
A|A|2 = 0 . (4.5)

The bifurcation parameter µ is defined by

µ = α− α∗ .

If µ > 0, one can introduce the scaling

µ1/2Ã = A , X̃ = µ1/2 (1− R)1/2 X ,

and the coefficient

C =
11− 42R + 11R2

8(1− R)
.

The coefficient C vanishes when R = Rc.
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The resulting equation is

Ã− ÃX̃X̃ − CÃ|Ã|2 = 0 . (4.6)

When C > 0, there are bright solitary waves, the envelope of which is given by

Ã = ±
√

2

C1/2 cosh X̃
.

In § 4.5, we will need Y (0) for these waves. One finds that

Y (0) =
4

1 + R

(
2µ

C

)1/2

, (4.7)

provided that R < Rc.
If µ < 0, one can introduce the scaling

|µ|1/2Ã = A , X̃ = |µ|1/2 (1− R)1/2 X .

The resulting equation is

Ã+ ÃX̃X̃ + CÃ|Ã|2 = 0 .

Writing Ã = r(X̃) eiθ(X̃) leads to

rX̃X̃ + r + Cr3 − r(θX̃)2 = 0 , (4.8)

2θX̃rX̃ + rθX̃X̃ = 0 . (4.9)

The system (4.8)–(4.9) has two first integrals I1 and I2 defined as follows:

uθX̃ = I1 , (4.10)
1
4
(uX̃)2 = −u2 − 1

2
Cu3 − I2

1 + I2u , (4.11)

where u ≡ r2. These two integrals are related to the energy flux and flow force
respectively, as shown by Bridges, Christodoulides & Dias (1995). When C < 0, there
is a one-parameter family of dark solitary waves. Let the parameter be γd, with
−2/3C 6 γd 6 −1/C . Then take

I2
1 = Cγ3

d + γ2
d , I2 = 3

2
Cγ2

d + 2γd ,

in order to have a double root γd of the right-hand side of (4.11). The third root
γs 6 γd then is

γs = − 2

C
− 2γd .

The integration of (4.11) provides the envelope of the dark solitary waves:

r =

[
γs + (γd − γs) tanh2

(
X̃

(
(γd − γs)|C|

2

)1/2
)]1/2

. (4.12)

Finally, θ(X̃) is obtained by integrating (4.10). When γd = −2/3C , γs = γd and the
dark solitary wave becomes a periodic wave. When γd = −1/C , γs = 0 and (4.12)
becomes

r = |C|−1/2 tanh
(
|X̃|/
√

2
)
. (4.13)
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4.4.2. Modified nonlinear Schrödinger equation

The unfolding of the singularity C = 0 (or R = Rc), which was performed by Dias
& Iooss (1996), leads to the modified nonlinear Schrödinger equation

AXX −
[
(1− R)µ− (1− R)C|A|2 − (Q− C2

1 + C1C2)|A|4
]
A

+i
[
( 1

2
C2 − 3C1)|A|2AX − ( 1

2
C2 + C1)A

2AX
]

= 0 , (4.14)

where C1, C2 and Q are coefficients depending on R. Note that the coefficient of the
term A|A|4 should read q4 − p2

2 + p2q3 in Dias & Iooss (1996) instead of simply q4.
Solitary wave solutions of (4.14) when µ = 0 and C < 0 were studied by Iooss (1997).
Writing A = r(X) eiθ(X) leads to

rXX + (1− R)Cr3 + (Q− C2
1 + C1C2)r

5 − r(θX)2 + (2C1 − C2)r
3θX = 0 , (4.15)

2θXrX + rθXX − 4C1r
2rX = 0 . (4.16)

There is a non-trivial solitary wave solution, with algebraic decay at infinity, given by

r =

[
6|C|(1− R)

3C2(1− R)2X2 + 4Q

]1/2

, (4.17)

θ = C1

(
3

Q

)1/2

arctan

[
1
2
|C|(1− R)X

(
3

Q

)1/2
]
. (4.18)

In § 4.5, we will need Y (0) for this solitary wave. One finds that

Y (0) =
2

1 + R

(
6|C|(1− R)

Q

)1/2

, (4.19)

provided that R > Rc. The value of the coefficient Q evaluated at R = Rc is 2.76.

4.5. Numerical results

As said above, we restricted the numerical computations to infinite depth in both
layers and we only computed bright solitary waves. The computation of dark solitary
waves is left for future work. In the plane R versus α (figure 12), we know from
the weakly nonlinear analysis that bright solitary waves bifurcate from infinitesimal
periodic waves along the curve α = α∗, as long as R < Rc. The main result of this
section is that we were able to compute with the numerical scheme described in § 4.3
bright solitary waves with damped oscillations in their tail even for values of R larger
than the critical value (21− 8

√
5)/11. These waves are always obtained for values of

α larger than α∗. In figure 13 we follow the evolution of the wave amplitude Y (0)
versus α− α∗. Figure 13(a) corresponds to a value of R smaller than the critical value
Rc while figure 13(b) corresponds to a value of R larger than this critical value. For
all values of R, we can compute both depression and elevations waves. In the case
R < Rc, the results near the bifurcation point α = α∗ are compared with the analytical
results (4.7). The main difference between the two cases is that when R > Rc the
solitary waves exist only above a certain amplitude Y (0). This phenomenon can also
be observed in figure 14 where the evolution of the amplitude Y (0) is plotted versus
R for µ = 0. As long as R < Rc, Y (0) = 0. As R becomes larger than Rc, solitary
waves of finite amplitude appear at α = α∗. For values of R close to Rc, the numerical
results are compared with the results provided by the analytical computations (4.19).
The analytical and the numerical results are complementary. Note the behaviour of
the elevation branch: it has a limit point at R ≈ 0.91. We computed the second part
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Figure 13. Branches of solitary waves in the form of wave packets. The amplitude at the origin
is plotted versus α − α∗. Both the elevation and the depression branches are shown. The elevation
branch has a limit point. (a) The density ratio R is equal to 0.1 and therefore less than the critical
ratio Rc. The value of α∗ is 0.336. The dotted line represents the analytical results given by (4.7). (b)
The density ratio R is equal to 0.7 and therefore greater than the critical ratio Rc. The value of α∗

is 2.408.

of the branch down to R = 0.7. It seems that for most values of R there are at least
two branches of elevation waves appearing at α = α∗ (see for example figure 13b
for R = 0.7)! Finally, some computed profiles corresponding to R = 0.7 are shown
in figure 15. In all the computations, the spacing is ∆Φ = 0.1, while the number of
points is N = 900. Of course, we did not explore the full structure of the branches
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Figure 14. Amplitude at the origin of solitary waves when α = α∗. The dotted line represents the
analytical results given by (4.19).
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Figure 15. Profiles of interfacial solitary waves in the form of wave packets (R = 0.7). From top to
bottom: depression wave (µ = 0), depression wave (µ = 0.4), elevation wave (µ = 0, Y (0) = 0.51),
elevation wave (µ = 0, Y (0) = 0.20).
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(a) (b) (c)

Figure 16. Limiting configurations for interfacial gravity waves: (a) surface waves, (b) infinitely
broad waves, (c) overhanging waves (from Pullin & Grimshaw 1988, figure 7).

of solutions. Most likely, there is a plethora of solitary waves similar to the plethora
encountered in the free-surface case. Note that a high accuracy is required and that
the cost of the computations can easily become prohibitive. Recall that with N = 900
there are 1800 nonlinear equations for 1800 unknowns to solve at each iteration!

All the solitary waves in infinite depth with α > α∗ decay like 1/X2 at infinity.
This somewhat surprising result (since the solutions of (4.6) feature oscillatory tails
with exponentially decaying amplitude) is due to the induced mean flow that is
not accounted for in the cubic nonlinear Schrödinger equation (see Akylas, Dias &
Grimshaw 1997).

5. Discussion
One of the open problems concerning gravity interfacial solitary waves is their

limiting configuration. As the velocity increases for a fixed ratio of fluid depths, the
waves reach a limiting configuration, which for surface waves (R = 0) is a wave with
a 120◦ angle crest (see figure 16a), and for interfacial waves is either an infinitely
broad wave (see figure 16b) or a wave with an overhanging region (see figure 16c).
To our knowledge, the question of which limiting configuration occurs is an open
problem. Numerical evidence has been given for both types of configurations (see for
example Pullin & Grimshaw (1988) or Sha & Vanden-Broeck (1993) for overhanging
waves and Funakoshi & Oikawa (1986) or Turner & Vanden-Broeck (1988) for very
broad waves). For very small or very large H , the limiting configuration seems to be
the overhanging wave. For H of order one, the limiting configuration seems to be
the infinitely broad wave. Note that Amick & Turner (1986) provided global results
on gravity interfacial waves. Their analytical results predict either the broadening
or the overhanging but cannot predict which one will occur! We performed a lot
of numerical computations but could not reach any conclusion because of a lack of
precision. To our knowledge, the limiting configuration of capillary–gravity interfacial
waves has not been studied yet.

There are theorems available on the symmetry of gravity interfacial solitary waves
with respect to the vertical axis and on the fact that the waves never cross the X-axis
(either Y (X) > 0 for all X or Y (X) < 0 for all X). See for example Craig & Sternberg
(1991), Li (1991), Maia (1997). For capillary–gravity waves, there are no theorems
available but it is likely that one can find capillary–gravity interfacial waves crossing
the X-axis. For example, the sign of Y (X) of the largest elevation wave in figure 9 is
not constant.

As said in the Introduction, experiments on gravity solitary interfacial waves have
been reported in the literature, by Koop & Butler (1981) and Michallet & Barthélémy
(1996) for example. Evans & Ford (1996) compared the numerical results obtained
on the full equations with various observed properties of oceanic internal waves as
reported from the Andaman Sea.

Experiments on capillary–gravity interfacial waves have also been reported, espe-
cially when there is a relative motion between the two fluids. For example, Pouliquen
et al. (1992) performed the Reynolds experiment which consists of tilting a tube filled
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ρ1 ρ2 σ h1 h2 c cd L

unit g cm−3 g cm−3 N m−1 cm cm cm s−1 cm s−1 cm
1. 0.92 0.08 1.8 1.7 8.3 9.1 6.3

Table 4. Fluids that could be used for experiments. The lower fluid is water and the upper fluid is an
equal mixture of silicone oil v2 and 1-2-3-4-tetrahydronaphtalene. We have indicated the conditions
for H2 = R, F = F∗c , W = W ∗

c , i.e. the conditions for the codimension-3 singularity mentioned in
§ 3.4.4. We have also indicated the conditions (speed cd and wavelength L) for the bright solitary
waves at α = α∗ or for the dark solitary waves.

with two immiscible fluids, thus creating a shear flow. Of course the purpose of the
experiment is not directly related to the present study, but it is interesting to note
that an inviscid theory seems to be appropriate to describe the waves they observe.
For the fluids used in their experiments, the critical speeds for the ‘classical’ solitary
waves near the codimension-3 singularity (F = F∗, W = W ∗, H2 = R) as well as for
the bright solitary waves at α = α∗ are shown in table 4. These are ‘realistic’ speeds.
The wavelength of the oscillations for the dark solitary waves is also realistic.

Another set of experiments was reported by Zeybeck & Yortsos (1992). They
considered the parallel flow of two immiscible fluids in a Hele-Shaw cell and showed
that the fluid interfaces could support wave motion which is governed by the KdV
equation.

In experiments, viscosity and surfactants can play an important role. Viscous
dissipation can be incorporated in the equations for the wave propagation. However,
in the Hele-Shaw context, viscous shear is not relevant to long waves.

The discussion above indicates that experiments can probably be done to study
some of the interfacial capillary–gravity waves described in this paper. Like water
waves, there are difficulties associated with experimental capillary–gravity waves
(accurate measure of the surface tension coefficient, dissipation due to viscosity and
contamination of the free surface). Solitary waves in the form of wave packets
have been observed experimentally by Zhang (1995) in the context of water waves.
Benjamin (1992) made some comments on the stability of such waves in the context
of interfacial waves. A stability analysis of the ‘classical’ capillary–gravity solitary
waves described in § 3 might indicate which one of the depression or of the elevation
wave is more likely to be observed.
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and were funded by CNRS (Centre National de la Recherche Scientifique).

Appendix A. Conjugate flows
We consider the occurrence of fronts at the interface between two finite layers

of fluid. We suppose that there is a uniform flow upstream and a uniform flow
downstream, possibly with different properties. The properties of the flow downstream
are denoted with primes. In this Appendix, we show that, for a given density ratio R,
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all fronts have the same speed upstream

c2 = g(h1 + h2)

(
1− R1/2

1 + R1/2

)
, (A 1)

and the same depth ratio downstream

H ′1 = H1c =
1

1 + R1/2
. (A 2)

The interest here is not in the shape of the interface, just in the upstream and
downstream states. Upstream, the velocity c is the same in the lower and upper
layers. The layers have depths h1 and h2. The bottom is located at y = 0. The
results of this Appendix are not new, except perhaps for the remark (A 19) (see for
example the Appendix of Funakoshi & Oikawa 1986). The treatment presented here,
which is slightly different, can be easily extended to the case of free-surface boundary
conditions.

We suppose that all quantities are known upstream. We show that in addition
to the trivial solution (c′1, h

′
1, c
′
2, h
′
2) = (c, h1, c, h2) there are other uniform solutions

downstream, provided that the uniform velocity upstream is equal to (A 1). Note that
only the special case where both fluids have the same velocity upstream is considered.

We now review the equations one can write, in addition of course to the constraint
h′1 + h′2 = h1 + h2.

The conservation of mass in both layers gives

c′ih
′
i = chi , i = 1, 2 . (A 3)

Next we write down the conservation of momentum. The pressure is assumed to
be zero at the interface upstream. Bernoulli’s equation gives

1
2
c2 + gy +

pi

ρi
= 1

2
c2 + gh1 , i = 1, 2 . (A 4)

It follows that the momentum upstream is equal to

ρ1h1c
2 + ρ2h2c

2 + 1
2
ρ1gh

2
1 − 1

2
ρ2gh

2
2 . (A 5)

Downstream, Bernoulli’s equation gives

1
2
c
′2
i + gy +

p′i
ρi

= 1
2
c2 + gh1 , i = 1, 2 . (A 6)

It follows that the momentum downstream is equal to

ρ1h
′
1c
′2
1 + ρ2h

′
2c
′2
2

+ρ1

∫ h′1

0

[
1
2
(c2 − c′21 ) + g(h1 − y)

]
dy + ρ2

∫ h1+h2

h′1

[
1
2
(c2 − c′22 ) + g(h1 − y)

]
dy .

After computing the integrals and setting the momentum on the left and the momen-
tum on the right equal, one obtains

ρ1h1c
2 + ρ2h2c

2 = 1
2
ρ1h

′
1(c

2 + c
′2
1 ) + 1

2
ρ2h

′
2(c

2 + c
′2
2 ) + 1

2
g(h1 − h′1)2(ρ2 − ρ1) . (A 7)

Finally, we write the conservation of energy. The pressure is required to be contin-
uous across the interface. It follows that downstream one has

1
2
ρ1(c

2 − c′21 ) + g(h1 − h′1)(ρ1 − ρ2) = 1
2
ρ2(c

2 − c′22 ) . (A 8)
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Let us now look for non-trivial solutions of equations (A 3), (A 7) and (A 8).
There are four unknowns (c′1, h

′
1, c
′
2, h
′
2) for four equations. However, there is also the

constraint h′1 + h′2 = h1 + h2. Therefore in general we expect the downstream state to
be the same as the upstream state, unless some degeneracy condition is satisfied. Let
us now find this degeneracy condition. The equations are rewritten in dimensionless
form. Equation (A 8) can be written as

1

F2
− H1 +H ′1

2H
′2
1

= R
2−H1 −H ′1
2(1−H ′1)2

, (A 9)

or

2F−2H
′4
1 +(R−1−4F−2)H

′3
1 +(2F−2 +2−H1 +RH1−2R)H

′2
1 +(2H1−1)H ′1−H1 = 0 .

(A 10)
Equation (A 7) can be written as

1

H ′1
+

R

1−H ′1
=

1

F2
, (A 11)

or

F−2H
′2
1 + (R − F−2 − 1)H ′1 + 1 = 0 . (A 12)

Equation (A 10) is in H
′4
1 while (A 12) is in H

′2
1 . Requiring both to have a common

root leads to the condition[
F−2H1(H1 − 1)−H1 + 1 + RH1

] [
1− 2F−2R − 2F−2 − 2R + R2 + F−4

]
= 0 .

(A 13)
Therefore, either

1

F2
=

1−H1 + RH1

H1(1−H1)
, (A 14)

which is the critical speed, or

F−4 − 2(1 + R)F−2 + (1− R)2 = 0 , (A 15)

that is to say

1

F
= 1± R1/2 .

We take the plus sign, since (A 11) clearly shows that F must be smaller than 1.
Therefore

F = (1 + R1/2)−1 . (A 16)

The common root is given by

H ′1 = H1c =
1

1 + R1/2
. (A 17)

Now recall that the critical speed for interfacial waves is given by

1

F∗2
=

1

H1

+
R

1−H1

. (A 18)

A simple calculation shows that

dF∗

dH1

= 0⇒ H1 = H1c , (A 19)

which precisely means that H ′1 = H1. At the maximum, F∗ = H1c.
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The front profiles shown in figure 2 have been obtained from the modified
Korteweg–de Vries equation in the gravity regime:

−µY +W ∗
c YXX +

3

2H2
1c

(
1− R

H2

)
Y 2 − 2

H4
1c Hc

Y 3 = 0 ,

where µ = 1/F∗2 − 1/F2.
Since µ > 0, one can introduce the change of variables

µ1/2 Ỹ =
1

H2
1c

(
2

Hc

)1/2

Y , X̃ = µ1/2 (W ∗
c )−1/2 X ,

and define the coefficient Q as

Q =
3

2

(
Hc

2µ

)1/2 (
1− R

H2

)
.

The resulting equation is

−Ỹ + ỸX̃X̃ + QỸ 2 − Ỹ 3 = 0 , (A 20)

which is valid if the difference |H2 − R| is of the order of µ1/2. When Q = ±3/
√

2,
this equation admits solutions in the form of fronts

Ỹ = ±
√

2

1 + e−X̃
= ± 1√

2

(
1 + tanh 1

2
X̃
)
. (A 21)

Appendix B. Derivation of the model equations
The model equations can be obtained by using classical perturbation expansions.

An alternative way is to use centre-manifold reduction after rewriting the equations
(2.1)–(2.5) as a dynamical system in space, X being the evolution variable. Kirrmann
(1991) and Mielke (1995) used this approach to reduce the problem of interfacial
waves to a set of ordinary differential equations. We define dimensionless velocity
components as

Ui = 1− c

ui
, Vi =

vi

ui
, i = 1, 2 . (B 1)

We take X and Ψ as the new independent variables. The resulting dynamical system
formulation of the problem is

UjX = −VjΨ (j = 1, 2) , (B 2a)

VjX = UjΨ +
2Vj

1−Uj

VjΨ +
V 2
j −U2

j + 2Uj

(1−Uj)2
UjΨ (j = 1, 2) , (B 2b)

YXX =
(1 + Y 2

X)3/2

W

[
1

F2
Y +

V 2
1 −U2

1 + 2U1

2(1−U1)2
− RV

2
2 −U2

2 + 2U2

2(1−U2)2

]
, (B 2c)

with the boundary conditions

V1(·, 0) = V2(·, 0) = YX .

In Bernoulli’s equation, Y can be eliminated by integrating (B 2a) with respect to Ψ
and then with respect to X:

Y = −
∫ 0

−H1

U1 dΨ + C1 and Y =

∫ H2

0

U2 dΨ + C2 .



248 O. Laget and F. Dias

Usually, one takes both constants to be zero from mass conservation arguments.
Therefore ∫ 0

−H1

U1 dΨ +

∫ H2

0

U2 dΨ = 0 . (B 3)

However, we will only take C1 to be zero. By doing so, we will introduce a zero
eigenvalue in the problem. By keeping both constants arbitrary, we would introduce
two zero eigenvalues in the problem. All the consequences of these zero eigenvalues
are not fully understood yet.

Let us introduce β(X) = V1(X, 0) = V2(X, 0). From now on, Y in Bernoulli’s
equation is replaced by −[U1], where [U1] stands for

[U1] =

∫ 0

−H1

U1(Ψ ) dΨ .

The reduction procedure can be applied close to F = F∗ (3.1) or close to the curve Γ1

(4.1). From now on, the analysis will be restricted to the case when the parameter F
is close to the critical value F∗. Therefore the bifurcation parameter µ = 1/F2−1/F∗2

is introduced. Introducing the vector w = [β,U1, V1, U2, V2], the system to be solved
can be written as

wX = Lµw +N (w) , (B 4)

where Lµ is the linearization about w = 0 and N represents the nonlinear terms. The
linear operator Lµ depends on the parameters R and W , and acts on w as follows:

Lµw = Lµ(R,W )w =

[
1

W

(
U1(0)− RU2(0)−

(
1

F∗2
+ µ

)
[U1]

)
,−V ′1, U ′1,−V ′2, U ′2

]
,

(B 5)
with boundary conditions

V1(0) = V2(0) , V1(−H1) = V2(H2) = 0 .

The primes represent derivatives with respect to Ψ .
The quadratic terms in N take the form

N 2(µ;R,W ) = [f0(µ;R,W ), 0, f1(µ;R,W ), 0, f2(µ;R,W )] ,

where

f0(µ;R,W ) =
1

2W

(
3U2

1 (0)− 3RU2
2 (0) + V 2

1 − RV 2
2 + 3

2
β2(1− R)

)
,

fj(µ;R,W ) = 2VjV
′
j + 2UjU

′
j + VjU

′
j (j = 1, 2) .

The linearization of the equations about the rest state w = 0 gives

wX = Lµw .

The non-zero eigenvalues λ of Lµ satisfy the relation

1

F2
−W λ2 = λ

[
R

tan(λH2)
+

1

tan(λH1)

]
. (B 6)

When λ is purely imaginary, one recovers the dispersion relation (2.6) while when λ
is real, one recovers the equation (3.4) for the decay rate.
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Zero is always an eigenvalue. Its eigenvector is given by

ϕ0 =

[
0,−1, 0,

H1/F
2 − 1

R
, 0

]
,

which, when µ = 0, takes the form

ϕ0 =

[
0,−1, 0,

1

H
, 0

]
.

This zero eigenvalue could be eliminated by requiring the velocities U1 and U2 to
approach zero at infinity.

When µ = 0, zero is a triple eigenvalue. The extra eigenvectors are given by

ϕ1 =


H1

0
Ψ +H1

0
−(1/H)(Ψ −H2)

 , ϕ2 =


0

1
2
Ψ 2 +H1Ψ + 1

3
H2

1

0
−(1/H)

[
1
2
Ψ 2 −H2Ψ + (H2/R)

(
W − 1

3
H1

)]
0

 .

We define the scalar product

〈(β,U1, V1, U2, V2), (β̃, Ũ1, Ṽ1, Ũ2, Ṽ2)〉 = ββ̃ +

∫ 0

−H1

(U1Ũ1 + V1Ṽ1)dΨ

+

∫ H2

0

(U2Ũ2 + V2Ṽ2)dΨ .

The adjoint operator is given by

L∗µw = L∗µ(R,W )w =

[
−U1(0) +U2(0),−V ′1 +

(
1

F∗2
+ µ

)
V1(0), U ′1,−V ′2, U ′2

]
,

with boundary conditions

V1(0) = − β

W
, V2(0) = −R β

W
, V1(−H1) = V2(H2) = 0 .

The primes represent derivatives with respect to Ψ .
Zero is always an eigenvalue with eigenvector

ψ2 = [0, 1, 0, 1, 0] .

When µ = 0, the two extra eigenvectors are

ψ1 =


−(W/R)H2

0
(1/R)HΨ + (1/R)H2

0
−Ψ +H2

 and ψ0 =


0

(1/2R)HΨ 2 + (1/R)HH1Ψ
0

− 1
2
Ψ 2 +H2Ψ − (W/R)H2

0

 .

Let ψ′i (i = 0, 1, 2) denote the normalized eigenvectors, which are such that
〈ϕi,ψ′j〉 = δij . One has

ψ′2 = C−1 ψ2,

ψ′1 = C−1 ψ1,

ψ′0 = C−1
(
ψ0 − (A/C)ψ2

)
,
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where

A = H1H2

[
2

15
H3

2 −
2W

3R
H2

2 +
1

9R
H1H

2
2 +

1

45R
H3

1 +
W

R2

(
W − 1

3
H1

)
H2

]
,

C = (W ∗ −W )
H1H2

R
.

We now write w in terms of ϕ0, ϕ1 and ϕ2:

w = a0(X)ϕ0 + a1(X)ϕ1 + a2(X)ϕ2 + · · · .

At leading order, the amplitudes a0 and a1 satisfy the system

a0X = a1 , a1X = µP11a0 + P02a
2
0 , (B 7)

where

P11 =
1

W −W ∗ and P02 = − 3H2

2RC

(
1− R

H2

)
.

The coefficient P11 is easy to obtain from the relation (B 6). The coefficient P02 is
given by

P02 = 〈N 2(ϕ0,ϕ0),ψ
′
1〉 .

At leading order, one obtains

YX = β , β = H1a1 + · · · , Y = H1a0 + · · ·

and therefore

µY + (W ∗ −W )YXX +
3

2H2
1

(
1− R

H2

)
Y 2 = 0 , (B 8)

which is precisely (3.8).
The modified as well as the fifth-order Korteweg–de Vries equations can be obtained

by using the same reduction method.
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